Fins to Feet

Sauropods – Whale Lizards
May 13, 2012, 2:26 am
Filed under: Uncategorized

The force of gravity – together with certain physiological and ecological constraints – holds in check the evolution of ever larger body-sizes among mammals on land. By becoming secondarily adapted to life in water, however, whales have been able to circumvent at least some of these size restrictions.

Left – A Blue Whale, the largest living animal known to science, Right – The African Elephant, the largest extant land animal

The largest extant land mammal – the African Elephant – is considerably outweighed by sea-going baleen whales of even middling proportions. In all of the Cenozoic era (the 65 million year period following the extinction of the dinosaurs), no terrestrial mammal ever grew to match the modern Gray Whale, let alone the Blue whale, in body dimensions. The reduced weight constraints of an aquatic medium accounts for this apparent difference in maximum attainable size.

Outside of the mammals, however, there is one group of extinct land creatures that did approach, and in some cases surpass, the awe-inspiring lengths of the largest baleen whales* pushing the evolutionary envelope in terms of height, length, weight and girth in a way that no other terrestrial animal group ever did.

Together with whales, the sauropods are examples of animal gigantism par excellence.

What are Sauropods?

The term “Sauropoda” refers to group of quadrupedal, megaherbivorous dinosaurs that existed for a span of over 135 million years – from the close of the Triassic period to the very end of the reign of the dinosaurs. Their highly distinctive body plan was characterized by:

1)       An elongate neck. One that, in some genera, grew to double the length of the trunk.
2)       A small skull relative to body size, with enlarged eye-orbits and highly placed nasal openings
3)       A massive body with a long tail
4)       Stout, columnar limbs positioned directly below the body. The bones of the hands/forefeet were arranged into a roughly tubular configuration (vertical with respect to the ground), with the phalanges (finger-bones) reduced. Only the first digit bore a claw – and this too was lost in some of the later groups. The structure of the hind foot was notably different from that of the fore foot – the phalanges were larger and three of the digits were typically claw bearing. The bones of the hindfoot were not arranged vertically with respect to the ground, as was the case with the hand bones, but appear to have assumed a “flatter” posture (semi-plantigrade). A cushioning “pad” of tissue seems to have been present at the base of the hindfoot. Reconstructions of sauropod hands and feet as either elephant-like, with nail-like hooves, or lizard-like, with clawed fingers splayed out every which way, are equally incorrect.

There was limited deviation from this general body plan over the rather lengthy course of sauropod evolution. Paleontologists have puzzled for decades over the ecological, biomechanical and physiological implications of sauropod size and anatomy. How big did they get? What sort of diet fueled those enormous bodies? How did the sauropod heart pump blood across those serpentine necks, all the way to the brain? This article shall consider some of these questions.

 How big did Sauropods get?

I have seen books quantify the dimensions of sauropods in feet, meters, cars, double-decker buses, building stories, elephants and bulldozers. The longest of them (Diplodocus and Supersaurus) hit a length of about 33-35 meters (longer than a blue whale). Even conservative body mass estimates suggest that the heaviest sauropods (Argentinosaurus) weighed over 70 tonnes (10 times the weight of a male African elephant).

The sizes of various sauropod species compared. The depicted sizes of the red sauropod (Amphicoelias) and the grey sauropod (Bruhathkayosaurus) are controversial and I have opted to ignore them in this article.

There were, of course, examples of much smaller sauropods – Eoparasaurus, for example, was only 6 meters long from snout to tail.

The immense size of sauropods would have served as a deterrent against predators (and there was no shortage of large, powerful predators in the world they inhabited). The long neck would have given the animal a wide sphere of access to vegetation.

What did sauropods feed on? How did they process food?

Sauropod teeth – which ranged from pencil shaped to spatulate, depending on the species – were designed primarily for grabbing and tearing vegetation off shoots and branches (‘cropping’) rather than grinding down tough plant matter. There is nothing analogous to the chewing apparatus of modern mammalian herbivores in the oral anatomy of sauropods. No large, flattened, squarish teeth positioned at the back of the jaw to pulverize ingested food items. The head was small and the dentition weak.  We may infer that very limited mechanical breakdown of food took place in the oral cavity before it was swallowed.

It has been proposed that sauropods utilized large stones in the stomach (called gastroliths) to grind down food. This digestive adaptation is called a “gastic mill” and is observed in modern birds. But the small sizes of fossilized ‘gizzard stones’ relative to body dimensions as well as the possibility that they are simply a result of sedimentary processes, has led a number of researchers to dismiss the idea that this form of food reduction played major role in sauropod digestion. But, without a gastric mill or significant oral processing, how did sauropods physically reduce ingested plant matter into smaller, more digestible bits?
Perhaps such processing was not necessary. Like modern vertebrate herbivores, Sauropods almost certainly relied on a community of symbiotic microbes to break down the otherwise-indigestible cellulose present in the cell walls of ingested plant material. This microbe-mediated process, involving the enzymatic breakdown of cellulose (and other carbohydrates) into short chain fatty acids that can be absorbed by the host, is called fermentation. The tremendous sizes of sauropods might have permitted the retention of food in the digestive tract for long periods of time.  Prolonged food retention times and extensive exposure to microbial fermentation may have compensated for the limited mechanical reduction of food in the mouth and gut.

The lengthy necks of sauropods gave them an enormous foraging range. They fed on gymnosperms (conifers), sphenophytes (eg. Horsetails) and pteridophytes (ferns). As flowering plants diversified rapidly during the mid-cretaceous, they too were incorporated into the sauropod diet.

Bird lungs and long necks

The vertebrae and ribs of sauropods have well-developed air-spaces. These air spaces are similar in nature to those found in birds, their closest living relatives, suggesting that sauropods may have sported an avian-style respiratory system – with air-sacs distributed throughout the body. The presence of these air spaces lightened the enormous skeletons of these animals without compromising strength. In addition, the presence of air sacs may have permitted the evolution of one of the signature features of sauropods: an elongate neck. As the length of the pathway of air-conduction between the nostrils and the lungs increases, the amount of so-called anatomical “dead space” increases. Dead space refers to inhaled air, located in the conducting areas of the respiratory system, which does not participate in gas exchange. The large dead space present in the incredibly long tracheas of sauropods would, at first blush, appear to severely lowered breathing performance. Under an avian model of respiration, however, the additional air-storage capacity provided by the air sacs would allow the trachea to overcome this dead space and maintain respiratory efficiency.

The high rates of growth determined from histological analysis of sauropod bone tissues appear to indicate that, for at least part of their life span, sauropods had high basal metabolic rates comparable to large mammals. This high BMR may have slowed down later in the life of the animal. Adult sauropods would have retained heat energy and maintained a relatively stable body temperature by mere virtue of their size (gigantothermy).  Muscular activity, metabolic reactions and digestive processes, such as fermentation in the gut, produced heat internally. The air sacs described earlier served as surfaces for heat exchange.

How did the sauropod heart pump blood to the head?

The vertical distance between the heart and the head in sauropods is dependent on neck posture. If large sauropods did hold their necks upright, the vertical heart-brain distance in many cases would be over 8 meters. Scientists infer that huge blood pressures (over 700 mm Hg) – unheard of among modern animals – would be necessary to supply the head with oxygen and nutrients. The enlarged, highly muscular heart that would be necessary to produce this astonishing hydrostatic pressure would be grossly energy inefficient, take up an inordinate amount of space and suffer from a number of mechanical disadvantages. Various cardiovascular adaptations have been hypothesized to exist in sauropods to get around this issue.

Some workers suggested that the sauropod circulatory system featured multiple ‘hearts’ in series, each accessory heart capable of pumping blood to the next valved pump, making it possible to achieve effective blood flow between the primary heart and the brain. However, no such system has been observed to exist in modern vertebrates and it is unclear how the nervous co-ordination of this congo-line of secondary hearts would have operated. Perhaps sauropod blood had a higher viscosity and erythrocyte count, increasing its oxygen carrying capacity.
The neck posture of sauropods is still widely debated, but if the head were habitually positioned at low-to-medium heights, as appears to be the case in Diplodocus, then there is no need to invoke the presence of a grossly hypertrophied heart or outrageously high blood pressures. Browsing at high elevations for limited periods of time, though costly in terms of cardiac output – may have given sauropods access to critical food resources unavailable to other animals.

Could sauropods rear up?

Kinetic-dynamic modeling of the skeletons of sauropods indicates that at least some of them were capable of briefly rearing up on their hind legs and utilizing their tails as a “third leg” of sorts (a kind of tripodal stance) before dropping back down to a quadrapedal stance. This would have allowed for browsing at great heights. A rearing diplodocus would have been a sight to behold indeed.

One of my favorite television depictions of sauropods was in a BBC production called The Ballad of Big Al. This clip involves a pack of Allosaurus’ launching a concerted attack on a Diplodocus herd. Enjoy!

* These same whales do still have the sauropods safely beat in terms of sheer tonnage.

1. Sander, P. Martin, et al. “Biology of the sauropod dinosaurs: the evolution of gigantism.” Biological Reviews 86.1 (2011): 117-155.
2. Farlow, James O. “Speculations about the diet and digestive physiology of herbivorous dinosaurs.” Paleobiology (1987): 60-72.
3. Wings, Oliver, and P. Martin Sander. “No gastric mill in sauropod dinosaurs: new evidence from analysis of gastrolith mass and function in ostriches.”Proceedings of the Royal Society B: Biological Sciences 274.1610 (2007): 635-640.
4. Seymour, Roger S. “Raising the sauropod neck: it costs more to get less.”Biology letters 5.3 (2009): 317-319.
5. Taylor, Michael P., Mathew J. Wedel, and Darren Naish. “Head and neck posture in sauropod dinosaurs inferred from extant animals.” Acta Palaeontologica Polonica 54.2 (2009): 213-220.
6. Apesteguía, S., V. TIDWELL, and K. CARPENTER. “Thunder-lizards: the Sauropodomorph dinosaurs.” The evolution of the hyposphene–hypantrum complex within Sauropoda (2005): 248-267.


6 Comments so far
Leave a comment

I’d assume that for a beast the size of a large sauropod, more conventional dietary adaptations to herbivore diets like an enlarged cecum or sacculated intestine would become impractical because of the proportions involved.

The surface area to volume ratio woulds start to severly affect nutritional uptake; the bigger the sauropod, the less intestinal surface area per unit volume you would have. Thus, the intestine would have to increase more than proportionally – and that would take up valuable thoracic cavity space. Given the adaptations postulated here, like the air sacs, this would already be at a premium.

The metabolic activity of the organism presumably would rise proportionally (above a certain threshold for very small animals) with the organism volume. So the deficit caused by the lowered surface area/volume ratio would have to be countered for by increased, or more efficient, uptake.

We can see how elephants already come close to a maximum limit on how much food can be eaten in a day – the devastation an elephant herd can cause to a forest is only mitigated by the relatively undigested fecal matter that stimulates new plant growth.

Further, the evolutionary adaptations of sauropods seem aimed at getting difficult-to-reach food sources, which would most likely be higher quality vegetation. This would go against an elephant-like stomach morphology that takes in lots of low-quality vegetation and absorbs what it can and passes the rest.

So, perhaps sauropods required the ruminant approach which, unlike our own digestive systems which employ microbes primarily to break down sugars, break down starches prior to entering the small intestine (where the freed sugars would then be broken down by different microbial species for intestinal absorption). This would bypass long, inefficient waiting periods in the intestine and increase uptake rates. However, ruminants repeatedly regurgitate and chew their food in order to speed up the process – which sauropods do not have the dentition for, if they lack any type of grinding apparatus.

Maybe they had some non-bony apparatus by which to facilitate grinding and regurgitating, like the dental pad of modern cows and goats? I am not educated in this topic

Comment by Ryan

Hey Ryan, thanks for the thoughtful comment and apologies for the (extremely) belated reply. Thinking about the digestive anatomy of sauropods is problematic because we have no solid modern analogues to look to. There are essentially no examples of large, terrestrial non-chewers today. We are also unaware of the kinds of microbiota that might have been found in the, no doubt voluminous, gut n bowels of a sauropod. Since bacteria armed with an arsenal of digestive enzymes have been independently acquired in a vast range of animals – from iguanas to elephants – we can safely say that such microbes were found in sauropods.
The only heavy-duty grinding mechanism I’ve seen posited for sauropods are gizzard stones – but the idea of sauropod stomach stones has its detractors. Most ungulates and large mammal herbivores today, as you correctly pointed out, have an enlarged caecum (horses, elephants) or a complex multichambered stomach (artiodactyls) – and some similar “fermentation chamber”, either in the foregut or hindgut, must have existed in sauropods for it to get very much at all out of all the cellulose-heavy food it consumed. I am unsure of what percentage of its body volume would have been occupied by its alimentary canal (this percentage is huge in Elephants), but I imagine that those ribs roofed a set of massive guts that dwarfed the spatial dimensions of the heart, accessory air-sacs and lungs.
In the end, I think that much of my analysis probably leaves readers with many more questions than answers. :/

“We can see how elephants already come close to a maximum limit on how much food can be eaten in a day – the devastation an elephant herd can cause to a forest is only mitigated by the relatively undigested fecal matter that stimulates new plant growth.”

Hey, on an interesting side note: I actually read a paper that suggested that sauropods could have actually ingested even more food per unit time than elephants, primarily because they never expended much (if any) time masticating the plant matter in their mouths!

At any rate, thanks for the comment!

Comment by arvindpillai

[…] Gigantism in sauropods — all the details behind growing huge. […]

Pingback by Carnival of Evolution #48: The Icelandic Saga! « Random Information

[…] Sauropods – Whale Lizards by arvindpillai […]

Pingback by sauropoda « Tsjok's blog

But besides watching these lovable animals, there are other things to do.
Global warming causes ice sheets to melt, increasing sea level, and prompting penguins to move farther south in
search of new habitats. Warming temperatures and stronger winds, break sea ice apart, so penguins can easily swim to
find food instead of walking.

Comment by antarctica facts

insanity max:30 review

Sauropods – Whale Lizards | Fins to Feet

Trackback by insanity max:30 review

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: